

N-Gram Language Models

Natalie Parde UIC CS 421

Language is inherently contextual.

- Words or characters in language are dependent upon one another!
- Sequence modeling allows us to make use of sequential information in language
- One way to model sequential information in language is with language models

This Week's Topics

N-gram language modeling Evaluating LMs Improving n-gram LMs

Thursday

Tuesday

Text classification Naïve Bayes Evaluating text classifiers

Language Modeling

 Learning how to effectively predict the likelihood of word or character sequences in a language

Why is language modeling useful?

- Helps identify words in noisy, ambiguous input
 - Speech recognition or autocorrect
- Helps generate natural-sounding language
 - Machine translation or image captioning
- In contemporary NLP, language modeling forms the basis of most approaches
 - Language representation

Language models come in many forms!

+

0

- More straightforward:
 - N-gram language models
- More sophisticated
 - Neural language models

N-Grams

- Sequences of a predefined item type within a language
 - $N \rightarrow Size \ of the sequence$
 - -gram → Greek-derived suffix meaning "what is written"
- First use of the term appears to be in the late 1940s
 - A Mathematical Theory of Communication, by Claude Shannon:

https://people.math.harvard.edu/~ctm/home/ text/others/shannon/entropy/entropy.pdf

N-grams can be words, characters, or any other type of item in your language.

N-grams are interesting!

N-grams are interesting!

Special N-Grams

- Most higher-order (n>3) ngrams are simply referred to using the value of n
 - 4-gram
 - 5-gram
- However, lower-order ngrams are often referred to using special terms:
 - Unigram (1-gram)
 - Bigram (2-gram)
 - Trigram (3-gram)

N-Gram Language Models

- Goal: Predict P(word|history)
 - P("spring" | "I'm so excited to be taking CS 421 this")

Probabilities for n-gram language models come from corpus frequencies.

- Intuition:
 - 1. Take a large corpus
 - 2. Count the number of times you see the history
 - 3. Count the number of times the specified word follows the history

P("spring" | "I'm so excited to be taking CS 421 this")

= C("I'm so excited to be taking CS 421 this spring") / C("I'm so excited to be taking CS 421 this")

However, we don't necessarily want to consider our *entire* history.

- What if our history contains uncommon words?
- What if we have limited computing resources?

Better way of estimating P(word|history)

- Instead of computing the probability of a word given its entire history, approximate the history using the most recent few words.
- We do this using fixed-length n-grams.

N-gram models follow the Markov assumption.

- We can predict the probability of some future unit without looking too far into the past
 - **Bigram language model:** Probability of a word depends only on the previous word
 - Trigram language model: Probability of a word depends only on the two previous words
 - N-gram language model: Probability of a word depends only on the *n*-1 previous words

More formally....

- $P(w_k | w_1^{k-1}) \approx P(w_k | w_{k-N+1}^{k-1})$
- We can then multiply these individual word probabilities together to get the probability of a word sequence
 - $P(w_1^n) \approx \prod_{k=1}^n P(w_k | w_{k-N+1}^{k-1})$

To compute ngram probabilities, we can use maximum likelihood estimation.

+

0

- Maximum Likelihood Estimation (MLE):
 - Get the required n-gram frequency counts from a corpus
 - Normalize them to a 0-1 range
 - P(w_n | w_{n-1}) =
 - # of occurrences of the bigram w_{n-1} w_n, divided by
 - # of occurrences of the unigram w_{n-1}

Bigram	Frequency
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Freq.
1
1
1
3
1
1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

Bigram	Freq.
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

P("I" | "<s>") = C("<s>I") / C("<s>") = 1 / 4 = 0.25

Bigram	Freq.
<s> </s>	1
lam	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

P("I" | "<s>") = C("<s>I") / C("<s>") = 1 / 4 = 0.25

P((</s>) | (cold.)) = C((cold. </s>) / C((cold.)) = 3 / 3 = 1.00

Bigram	Freq.
<s> </s>	1
l am	1
am cold.	1
cold.	3
is Chicago.	1
Chicago.	1

Unigram	Freq.
<s></s>	4
I	1
am	1
cold.	3
Chicago.	1
	4

$$P("I" | "~~") = C("~~I") / C("~~") = 1 / 4 = 0.25~~~~~~$$
$$P("" | "cold.") = C("cold. ") / C("cold.") = 3 / 3 = 1.00$$

Natalie Parde - UIC CS 421

We can learn a lot of useful things from n-gram statistics!

+

0

- Syntactic information
 - Do nouns often follow verbs?
 - Do verbs usually follow specific unigrams?
- Task-relevant information
 - Is it likely that virtual assistants will hear the word "I" in a user's input?
- Cultural or sociological information
 - Are people likelier to want quesadillas than haggis?

Which type of ngram is best?

- In general, the highest-order value of *n* that your data can support
- Sparsity increases with order, and sparse feature vectors are not very useful when training statistical models
- Make sure that your dataset is large enough to handle your selected n-gram size
- We can usually determine this by running experiments on the same data with different n-gram sizes and figuring out which size leads to the best results
- For a deep dive into statistical power in NLP experiments, check out the following paper:
 - With Little Power Comes Great Responsibility, by Dallas Card et al.: <u>https://aclanthology.org/2020.emnlp-main.745/</u>

We've learned how to build ngram language models, but how do we evaluate them?

- Two types of evaluation paradigms:
 - Extrinsic
 - Intrinsic
- Extrinsic evaluation: Embed the language model in an application, and compute changes in task performance
- Intrinsic evaluation: Measure the quality of the model, independent of any application

Perplexity

- Intrinsic evaluation metric for language models
- Perplexity (PP) of a language model on a test set is the inverse probability of the test set, normalized by the number of words in the test set

Natalie Parde - UIC CS 421

More formally....

•
$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2...w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1...w_{i-1})}}$$

- Where *W* is a test set containing words *w*₁, *w*₂, ..., *w*_n
- History size depends on n-gram size
 - $P(w_i|w_{i-1})$ vs $P(w_i|w_{i-2}w_{i-1})$, etc.
- Higher conditional probability of a word sequence \rightarrow lower perplexity
 - Minimizing perplexity = maximizing test set probability according to the language model

Training Set

Word	Frequency
CS	10
421	10
Statistical	10
Natural	10
Language	10
Processing	10
University	10
of	10
Illinois	10
Chicago	10

Word	Frequency
CS	10
421	10
Statistical	10
Natural	10
Language	10
Processing	10
University	10
of	10
Illinois	10
Chicago	10

Test String

CS 421 Statistical Natural Language Processing University of Illinois Chicago

Word	Frequency
CS	10
421	10
Statistical	10
Natural	10
Language	10
Processing	10
University	10
of	10
Illinois	10
Chicago	10

Test String

CS 421 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

Test String

CS 421 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1 w_2 \dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i | w_1 \dots w_{i-1})}}$$

P("CS") = C("CS") / C(<all unigrams>) = 10/100 = 0.1

Test String

CS 421 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1 w_2 \dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i | w_1 \dots w_{i-1})}}$$

P("CS") = C("CS") / C(<all unigrams>) = 10/100 = 0.1 P("421") = C("421") / C(<all unigrams>) = 10/100 = 0.1

Word	Frequency	P(Word)
CS	10	0.1
421	10	0.1
Statistical	10	0.1
Natural	10	0.1
Language	10	0.1
Processing	10	0.1
University	10	0.1
of	10	0.1
Illinois	10	0.1
Chicago	10	0.1

Test String

CS 421 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

Word	Frequency	P(Word)
CS	10	0.1
421	10	0.1
Statistical	10	0.1
Natural	10	0.1
Language	10	0.1
Processing	10	0.1
University	10	0.1
of	10	0.1
Illinois	10	0.1
Chicago	10	0.1

Test String

CS 421 Statistical Natural Language Processing University of Illinois Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

PP("CS 421 Statistical Natural Language Processing University of Illinois Chicago")

Word	Frequency	P(Word)
CS	1	
421	1	
Statistical	1	
Natural	1	
Language	1	
Processing	1	
University	1	
of	1	
Illinois	1	
Chicago	91	

Test String

Illinois Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

Word	Frequency	P(Word)
CS	1	0.01
421	1	0.01
Statistical	1	0.01
Natural	1	0.01
Language	1	0.01
Processing	1	0.01
University	1	0.01
of	1	0.01
Illinois	1	0.01
Chicago	91	0.91

Test String

Illinois Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago

$$PP(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

Word	Frequency	P(Word)
CS	1	0.01
421	1	0.01
Statistical	1	0.01
Natural	1	0.01
Language	1	0.01
Processing	1	0.01
University	1	0.01
of	1	0.01
Illinois	1	0.01
Chicago	91	0.91

Test String

Illinois Chicago Chicago

$$P(W) = \sqrt[n]{\frac{1}{P(w_1w_2\dots w_n)}} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

PP("Illinois Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago Chicago")

P

Perplexity can be used to compare different language models.

Which language model is best?

- Model A: Perplexity = 962
- Model B: Perplexity = 170
- Model C: Perplexity = 109

Perplexity can be used to compare different language models.

Which language model is best?

- Model A: Perplexity = 962
- Model B: Perplexity = 170
 Model C: Perplexity = 109

What kind of perplexity scores are state-of-theart language models reaching?

- Depends on the dataset
- Recently, as low as:
 - ~10 on WikiText-103: <u>https://paperswithcode.com/sota/</u> <u>language-modelling-on-wikitext-</u> <u>103</u>
 - ~20 on Penn Treebank (Word Level): <u>https://paperswithcode.com/sota/</u> <u>language-modelling-on-penn-</u> <u>treebank-word</u>

A cautionary note....

- Improvements in perplexity do not guarantee improvements in task performance!
- However, the two are often correlated (and perplexity is quicker and easier to check)
- Strong language model evaluations also include an extrinsic evaluation component

How can we generate text using an ngram language model?

• • • • • • • • • • • • •

N-gram size affects generation output!

Why were we generating verbatim Shakespeare text with a 4gram language model?

+

0

- The corpus of all Shakespearean text is relatively small (by modern NLP standards)
 - 29,066 vocabulary words
 - 884,647 tokens
- This means higher-order n-gram matrices are sparse:
 - Only five possible continuations for "It cannot be but" ("that," "I," "he," "thou," and "so")
 - Probability for all other continuations is assumed to be zero

"Zero" probabilities create challenges for language models.

- Zero probabilities occur in two different scenarios:
 - Unknown words (out-of-vocabulary words)
 - Known words in unseen contexts
- However, language is varied and often unpredictable---few combinations are truly impossible
- Zero probabilities also interfere with perplexity calculations

Modeling Unknown Words

- Add a pseudoword <UNK> to the vocabulary
- Then....
 - Option A:
 - Choose a fixed words list
 - Convert any words not in that list to <UNK>
 - Estimate the probabilities for <UNK> like any other word
 - Option B:
 - Replace all words occurring fewer than n times with <UNK>
 - Estimate the probabilities for <UNK> like any other word
 - Option C:
 - Replace the first occurrence of each word with <UNK>
 - Estimate the probabilities for <UNK> like any other word
- Beware: If <UNK> ends up with a high probability (e.g., because you have a small vocabulary), your language model will have artificially lower perplexity!
 - Make sure to compare to other language models using the same vocabulary to avoid gaming this metric

We can handle known words in previously unseen contexts by applying smoothing techniques.

Smoothing

- Taking a bit of the probability mass from more frequent events and giving it to unseen events.
 - · Sometimes also called "discounting"
- Many different smoothing techniques:
 - Laplace (add-one)
 - Add-k
 - Stupid backoff
 - Kneser-Ney

Bigram	Frequency
CS 421	8
CS 590	5
CS 594	2
CS 521	0 😢

Bigram	Frequency
CS 421	7
CS 590	5
CS 594	2
CS 521	1 🖊 🚭

Laplace Smoothing

- Add one to all n-gram counts before they are normalized into probabilities
- Not the highest-performing technique, but a useful baseline
 - Practical method for other text classification tasks

•
$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i+1}{N+V}$$

		Unigram	Frequency	Bigram	Frequency
		Chicago	4	Chicago is	2
Corpus Statistics:	~	is	8	is cold	4
		cold	6	is hot	0
		hot	0		0

Natalie Parde - UIC CS 421

Natalie Parde - UIC CS 421

Natalie Parde - UIC CS 421

UnigramFrequencyCorpus Statistics:Chicago4is8Chicago is2+1is8cold6is1cold6hot00+1Chicago cold0+10Chicago cold0+10Chicago hot0+10Chicago hot0+1Chicago hot0+1Chicago $\frac{5}{22} = 0.23$ isis $\frac{9}{22} = 0.41$							
Corpus Statistics:Chicago4Chicago is2+1BigramFrequencyCold6is cold4+1Cold6660+100+1Chicago Chicago0+1000+10+10+1Chicago cold0+1000+100+1Chicago cold0+1Chicago $\frac{5}{22} = 0.23$ BigramProbabilityChicago hot0+100000P(w_i) = $\frac{c_i}{v_i} \rightarrow P_{1anlace}(w_i) = \frac{c_{i+1}}{v_i+v_i}$ is $\frac{9}{22} = 0.41$ is cold $\frac{5}{8+4} = \frac{5}{12}$				Unigram	Frequency	Bigram	Frequency
Corpus Statistics:is8is cold4+1BigramFrequencyChicago Chicago0+1Chicago Chicago0+1Chicago is2+1Chicago cold0+1Chicago hot0+1O+10Chicago hot0+1Chicago hot0+1Chicago $(w_i) = \frac{c_i+1}{N+N}$ Chicago $\frac{9}{22} = 0.41$ is coldis cold $\frac{5}{8+4} = \frac{5}{12}$				Chicago	4	Chicago is	2+1
BigramFrequencyChicago Chicago0+1Chicago Chicago0+1Chicago is2+1Chicago cold0+1Chicago hot0+1 $P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Lanlace}}(w_i) = \frac{c_i+1}{N+N}$ Image: Cold for the second	Corpu	s Statistics:	\prec	is	8	is cold	4+1
Chicago Chicago0+1hot00+1Chicago is2+1 <td< td=""><td>Bigram</td><td>Frequency</td><td></td><td>cold</td><td>6</td><td>is hot</td><td>0+1</td></td<>	Bigram	Frequency		cold	6	is hot	0+1
Chicago is2+1Chicago cold0+1Chicago hot0+1Chicago hot0+1Chicago $\frac{5}{22} = 0.23$ is $\frac{9}{22} = 0.41$	Chicago Chicago	0+1		hot	0		0+1
Chicago cold0+1UnigramProbabilityChicago hot0+1 $Chicago$ $\frac{5}{22} = 0.23$ $Chicago is$ $\frac{3}{4+4} = \frac{3}{8}$ $P(w_i) = \frac{c_i}{N} \rightarrow P_{Laplace}(w_i) = \frac{c_i+1}{N+K}$ is $\frac{9}{22} = 0.41$ is cold $\frac{5}{8+4} = \frac{5}{12}$	Chicago is	2+1		-			
Chicago hot $0+1$ $P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i+1}{N+N}$ Chicago $\frac{5}{22} = 0.23$ is $\frac{9}{22} = 0.41$ Chicago is $\frac{3}{4+4} = \frac{3}{8}$ is cold $\frac{5}{8+4} = \frac{5}{12}$	Chicago cold	0+1		Unigram	Probability	Bigram	Probability
$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + N} \text{is } \frac{9}{22} = 0.41 \text{is cold} \frac{5}{8 + 4} = \frac{5}{12}$	Chicago hot	0+1		Chicago	$\frac{5}{22} = 0.23$	Chicago is	$\frac{3}{4+4} = \frac{3}{8} = 0.38$
	$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}$	$c_{ce}(w_i) = \frac{c_i + 1}{N + V}$	$\left<\right>$	is	$\frac{9}{22} = 0.41$	is cold	$\frac{5}{8+4} = \frac{5}{12} = 0.42$

cold

hot

$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i+1}{N+V}$$

 $\frac{7}{22} = 0.32$

 $\frac{1}{22} = 0.05$

is hot

 $\frac{1}{8+4} = \frac{1}{12} = 0.08$

Probabilities: Before and After

Bigram	Probability
Chicago is	$\frac{2}{4} = 0.50$
is cold	$\frac{4}{8} = 0.50$
is hot	$\frac{0}{8} = 0.00$
Bigram	Probability
Bigram Chicago is	Probability $\frac{3}{8} = 0.38$
Bigram Chicago is is cold	Probability $\frac{3}{8} = 0.38$ $\frac{5}{12} = 0.42$

Natalie Parde - UIC CS 421

Add-K Smoothing

- Moves a bit less of the probability mass from seen to unseen events
- Rather than adding one to each count, add a fractional count (e.g., 0.5 or 0.01)

•
$$P(w_i) = \frac{c_i}{N} \to P_{Add-K}(w_i) = \frac{c_i+k}{N+kV}$$

• $P(w_n|w_{n-1}) = \frac{c(w_{n-1}w_n)}{c(w_{n-1})} \to P_{Add-K}(w_n|w_{n-1}) = \frac{c(w_{n-1}w_n)+k}{c(w_{n-1})+kV}$

• The value *k* can be optimized on a validation set

Add-K smoothing is useful for some tasks, but still tends to be suboptimal for language modeling.

- Other smoothing techniques?
 - Backoff: Use the specified n-gram size to estimate probability if its count is greater than 0; otherwise, *backoff* to a smaller-size n-gram until you reach a size with non-zero counts
 - Interpolation: Mix the probability estimates from multiple n-gram sizes, weighing and combining the n-gram counts

Katz Backoff

- Incorporate a function $\dot{\alpha}$ to distribute probability mass to lower-order n-grams
- Rely on a discounted probability P* if the n-gram has non-zero counts
- Otherwise, recursively back off to the Katz probability for the (n-1)-gram —

•
$$P_{BO}(w_n | w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n | w_{n-N+1}^{n-1}), & \text{if } c(w_{n-N+1}^n) > 0 \\ \alpha(w_{n-N+1}^{n-1}) P_{BO}(w_n | w_{n-N+2}^{n-1}), & \text{otherwise} \end{cases}$$

+

0

Interpolation

- Linear interpolation
 - $P'(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$ • Where $\sum_i \lambda_i = 1$
- Conditional interpolation
 - $P'(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1}) + \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1}) + \lambda_3(w_{n-2}^{n-1})P(w_n)$

N-Gram	Probability	Value	Weight
I 💛 421	P(421 I 💛)	0.7	0.5
l / 421	P(421 I 🚔)	0.7	0.1

Context-conditioned weights

Some smoothing techniques incorporate several of these techniques.

- Commonly used, high-performing technique that incorporates absolute discounting
- Objective: Capture the intuition that although some lower-order n-grams are frequent, they are mainly only frequent in specific contexts
 - tall nonfat decaf peppermint _
 - "york" is a more frequent unigram than "mocha" (7.4 billion results vs. 135 million results on Google), but it's mainly frequent when it follows the word "new"
- Creates a unigram model that estimates the probability of seeing the word w as a novel continuation, in a new unseen context
 - Based on the number of different contexts in which *w* has already appeared

• $P_{\text{Continuation}}(w) = \frac{|\{v:C(vw)>0\}|}{|\{(u',w'):C(u'w')>0\}|}$

$$P_{\rm KN}(w_i|w_{i-n+1}^{i-1}) = \frac{\max(c_{\rm KN}(w_{i-n+1}^i) - d, 0)}{\sum_{\nu} c_{\rm KN}(w_{i-n+1}^{i-1}\nu)} + \lambda(w_{i-n+1}^{i-1})P_{\rm KN}(w_i|w_{i-n+2}^{i-1})$$

 $P_{\rm KN}(w_i|w_{i-n+1}^{i-1}$

Normalizing constant to distribute the probability mass that's been discounted

 $\max(c_{KN}(w_{i-n+1}^{\iota})-d, 0)$

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

+ $(\lambda(w_{i-n+1}^{i-1})P_{KN}(w_i|w_{i-n+2}^{i-1}))$

 $P_{_{\rm KN}}(w_i|w_{i-n+1}^{i-1})$

Normalizing constant to distribute the probability mass that's been discounted

 $\max(c_{KN}(w_{i-n+1}^{l}))$

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

Discounted n-gram probability ... when the recursion terminates, unigrams are interpolated with the uniform distribution (ε = empty string)

$$P_{KN}(w) = \frac{\max(c_{KN}(w) - d, 0)}{\sum_{w'} c_{KN}(w')} + \lambda(\varepsilon) \frac{1}{V}$$

-d, 0)

 $\lambda(w_{i-n+1}^{i-1})P_{KN}(w_i|w_{i-n+2}^{i-1})$

Natalie Parde - UIC CS 421

Stupid Backoff

• $S(w) = \frac{c(w)}{w}$

- If a higher-order n-gram has a zero count, backs off to a lowerorder n-gram, weighted by a fixed weight

•
$$S(w_i | w_{i-k+1}^{i-1}) = \begin{cases} \frac{c(w_{i-k+1}^i)}{c(w_{i-k+1}^{i-1})} & \text{if } c(w_{i-k+1}^i) > 0 \\ \lambda S(w_i | w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

• Terminates in the unigram, which has the probability:

Generally, 0.4 works well (Brants et al., 2007)
Summary: Language Modeling with N-Grams

- N-grams: Sequences of *n* letters
- Language models: Statistical models of language based on observed word or character cooccurrences
- N-gram probabilities can be computed using maximum likelihood estimation
- Language models can be intrinsically evaluated using perplexity
- Unknown words can be handled using <UNK> tokens
- Known words in unseen contexts can be handled using smoothing