
N-Gram
Language

Models
Natalie Parde

UIC CS 421

Language is inherently contextual.

• Words or characters in
language are dependent upon
one another!

• Sequence modeling allows
us to make use of sequential
information in language

• One way to model sequential
information in language is
with language models

Natalie Parde - UIC CS 421
2

This
Week’s
Topics

Natalie Parde - UIC CS 421 3

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers

This
Week’s
Topics

Natalie Parde - UIC CS 421 4

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers

Language
Modeling
• Learning how to effectively

predict the likelihood of
word or character
sequences in a language

Natalie Parde - UIC CS 421 5

Why is language
modeling useful?

• Helps identify words in noisy, ambiguous
input

• Speech recognition or autocorrect
• Helps generate natural-sounding language

• Machine translation or image
captioning

• In contemporary NLP, language modeling
forms the basis of most approaches

• Language representation

Natalie Parde - UIC CS 421 6

Language
models
come in

many
forms!

N-Grams

• Sequences of a predefined item type
within a language

• N → Size of the sequence
• -gram → Greek-derived suffix meaning

“what is written”
• First use of the term appears to be in the

late 1940s
• A Mathematical Theory of Communication,

by Claude Shannon:
https://people.math.harvard.edu/~ctm/home/
text/others/shannon/entropy/entropy.pdf

Natalie Parde - UIC CS 421 8

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

N-grams can be words,
characters, or any other
type of item in your
language.

Natalie Parde - UIC CS 421 9

N-grams are interesting! N-grams are interesting!

Special
N-Grams

• Most higher-order (n>3) n-
grams are simply referred
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram

Natalie Parde - UIC CS 421 10

N-Gram Language Models
• Goal: Predict P(word|history)

• P(“spring” | “I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

P(“fall” | “I’m

so excited to

be taking CS

421 this”)
P(“refrigerator” |

“I’m so excited

to be taking CS

421 this”)

P(“and” | “I’m so excited to be taking CS 421 this”)

11

Probabilities for n-gram
language models come from
corpus frequencies.
• Intuition:

1. Take a large corpus
2. Count the number of times you see the history
3. Count the number of times the specified word

follows the history

P(“spring” | “I’m so excited to be taking CS 421 this”)
= C(“I’m so excited to be taking CS 421 this spring”) /
C(“I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421
12

However, we don’t necessarily want to
consider our entire history.
• What if our history contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 421 this”)

Out of all possible 11-word sequences on the web, how
many are “I’m so excited to be taking Natalie Parde’s
CS 421 this”?

Natalie Parde - UIC CS 421 13

Better way of estimating P(word|history)

• Instead of computing the probability of a
word given its entire history,
approximate the history using the
most recent few words.

• We do this using fixed-length n-grams.

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

14

N-gram
models follow
the Markov
assumption.

• We can predict the probability of some future
unit without looking too far into the past

• Bigram language model: Probability of a
word depends only on the previous word

• Trigram language model: Probability of a
word depends only on the two previous
words

• N-gram language model: Probability of a
word depends only on the n-1 previous
words

Natalie Parde - UIC CS 421
15

More formally….
• 𝑃 𝑤! 𝑤"!#" ≈ 𝑃(𝑤!|𝑤!#$%"!#")
• We can then multiply these individual word probabilities together to get the

probability of a word sequence
• 𝑃 𝑤"& ≈ ∏!'"

& 𝑃(𝑤!|𝑤!#$%"!#")

Natalie Parde - UIC CS 421

P(“Summer break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) *
P(“is” | “break”) * P(“break” | “Summer”)

16

To compute n-
gram
probabilities,
we can use
maximum
likelihood
estimation.

17

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

Natalie Parde - UIC CS 421 18

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Natalie Parde - UIC CS 421 19

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1

Natalie Parde - UIC CS 421 20

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

Natalie Parde - UIC CS 421 21

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

Natalie Parde - UIC CS 421 22

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421 23

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421

🤷
24

We can
learn a lot
of useful
things from
n-gram
statistics!

Which type of n-
gram is best?
• In general, the highest-order value of n that your data can

support

• Sparsity increases with order, and sparse feature vectors are
not very useful when training statistical models

• Make sure that your dataset is large enough to handle your
selected n-gram size

• We can usually determine this by running experiments on the
same data with different n-gram sizes and figuring out which
size leads to the best results

• For a deep dive into statistical power in NLP experiments,
check out the following paper:

• With Little Power Comes Great Responsibility, by Dallas
Card et al.: https://aclanthology.org/2020.emnlp-
main.745/

Natalie Parde - UIC CS 421 26

https://aclanthology.org/2020.emnlp-main.745/
https://aclanthology.org/2020.emnlp-main.745/

This
Week’s
Topics

Natalie Parde - UIC CS 421 27

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers

We’ve learned
how to build n-
gram language
models, but
how do we
evaluate them?

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the
language model in an application,
and compute changes in task
performance

• Intrinsic evaluation: Measure the
quality of the model, independent of
any application

28

Perplexity
• Intrinsic evaluation metric for language models
• Perplexity (PP) of a language model on a test set is the

inverse probability of the test set, normalized by the
number of words in the test set

Natalie Parde - UIC CS 421
29

More formally….

• 𝑃𝑃 𝑊 = ! !
"($"$#…$!)

= ! ∏'(!
) !

"($$|$"…$$%")

• Where W is a test set containing words w1, w2, …,
wn

• History size depends on n-gram size
• 𝑃(𝑤'|𝑤'+!) vs 𝑃(𝑤'|𝑤'+,𝑤'+!), etc.

• Higher conditional probability of a word sequence →
lower perplexity

• Minimizing perplexity = maximizing test set
probability according to the language model

Natalie Parde - UIC CS 421

30

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

Natalie Parde - UIC CS 421 31

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

Natalie Parde - UIC CS 421 32

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

Natalie Parde - UIC CS 421 33

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421 34

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“421”) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421 35

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

Natalie Parde - UIC CS 421 36

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

PP(“CS 421 Statistical Natural Language Processing
University of Illinois Chicago”)

= "& !
'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!

= 10

Natalie Parde - UIC CS 421 37

Example: Perplexity

Word Frequency P(Word)
CS 1
421 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

Natalie Parde - UIC CS 421 38

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

Natalie Parde - UIC CS 421 39

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

PP(“Illinois Chicago Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago”)

= "& !
'.'!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!

= 1.73

Natalie Parde - UIC CS 421 40

Perplexity can be used to
compare different
language models.

41

Perplexity can be used to
compare different
language models.

42

What kind of perplexity
scores are state-of-the-
art language models
reaching?

• Depends on the dataset
• Recently, as low as:

• ~10 on WikiText-103:
https://paperswithcode.com/sota/
language-modelling-on-wikitext-
103

• ~20 on Penn Treebank (Word
Level):
https://paperswithcode.com/sota/
language-modelling-on-penn-
treebank-word

Natalie Parde - UIC CS 421 43

https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

A cautionary note….

• Improvements in perplexity do not guarantee improvements in task
performance!

• However, the two are often correlated (and perplexity is quicker and
easier to check)

• Strong language model evaluations also include an extrinsic
evaluation component

Natalie Parde - UIC CS 421
44

How can we generate text using an n-
gram language model?

Natalie Parde - UIC CS 421 45

1

Select an n-gram randomly from the
distribution of all n-grams in the
training corpus

2

Randomly select an n-gram from the
same distribution, dependent on the
previous n-gram
•If we're using a bigram model and the
previous bigram was "CS 421," our next
bigram has to start with "421")

3

Repeat until the sentence-final token is
reached

N-gram size
affects
generation
output!

46

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

Why were we
generating
verbatim
Shakespeare
text with a 4-
gram language
model?

This
Week’s
Topics

Natalie Parde - UIC CS 421 48

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers

“Zero”
probabilities
create
challenges
for language
models.

• Zero probabilities occur in two different
scenarios:

• Unknown words (out-of-vocabulary
words)

• Known words in unseen contexts
• However, language is varied and often

unpredictable---few combinations are
truly impossible

• Zero probabilities also interfere with
perplexity calculations

Natalie Parde - UIC CS 421 49

Modeling
Unknown
Words

• Add a pseudoword <UNK> to the vocabulary

• Then….
• Option A:

• Choose a fixed words list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Option C:
• Replace the first occurrence of each word with <UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware: If <UNK> ends up with a high probability (e.g., because you
have a small vocabulary), your language model will have artificially
lower perplexity!

• Make sure to compare to other language models using the
same vocabulary to avoid gaming this metric

Natalie Parde - UIC CS 421 50

We can handle known words in previously unseen
contexts by applying smoothing techniques.

Natalie Parde - UIC CS 421 51

Smoothing

• Taking a bit of the probability mass from more frequent events and giving it
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Natalie Parde - UIC CS 421

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1 🥰

52

Laplace Smoothing

N
atalie Parde - U

IC
 C

S 421

• Add one to all n-gram counts before they are normalized into
probabilities

• Not the highest-performing technique, but a useful baseline
• Practical method for other text classification tasks

• 𝑃 𝑤/ = 0-
1 → 𝑃Laplace 𝑤/ = 0-23

124

53

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

Natalie Parde - UIC CS 421 54

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 55

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Natalie Parde - UIC CS 421 56

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 57

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 58

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 59

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08

Natalie Parde - UIC CS 421

Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1

60

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12

= 0.08

Probabilities:
Before and
After

61

Add-K
Smoothing

Natalie Parde - UIC CS 421

• Moves a bit less of the probability mass
from seen to unseen events

• Rather than adding one to each count,
add a fractional count (e.g., 0.5 or 0.01)

• 𝑃 𝑤/ = 0-
1 → 𝑃Add−K 𝑤/ = 0-27

1274

• 𝑃 𝑤8|𝑤893 = 0(:;<=:;)
0(:;<=)

 →

𝑃Add−K 𝑤8|𝑤893 = 0 :;<=:; 27
0 :;<= 274

• The value k can be optimized on a
validation set

62

Add-K smoothing is useful for some tasks,
but still tends to be suboptimal for language
modeling.

63

Katz Backoff

64

Interpolation
• Linear interpolation

• 𝑃; 𝑤8 𝑤89<𝑤893 =	𝜆3𝑃 𝑤8 𝑤89<𝑤893 + 𝜆<𝑃 𝑤8 𝑤893 + 𝜆=𝑃(𝑤8)
• Where ∑! 𝜆! = 1

• Conditional interpolation
• 𝑃7 𝑤# 𝑤#&"𝑤#&! =	𝜆!(𝑤#&"#&!)𝑃 𝑤# 𝑤#&"𝑤#&! + 𝜆"(𝑤#&"#&!)𝑃 𝑤# 𝑤#&! + 𝜆8(𝑤#&"#&!)𝑃(𝑤#)

Context-conditioned weights

Natalie Parde - UIC CS 421

N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1

65

Some smoothing techniques incorporate
several of these techniques.

Natalie Parde - UIC CS 421 66

Kneser-Ney Smoothing Stupid Backoff

Kneser-Ney Smoothing

• Commonly used, high-performing technique that incorporates absolute discounting
• Objective: Capture the intuition that although some lower-order n-grams are frequent,

they are mainly only frequent in specific contexts
• tall nonfat decaf peppermint _______

• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135 million
results on Google), but it’s mainly frequent when it follows the word “new”

• Creates a unigram model that estimates the probability of seeing the word w as a novel
continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = "∶$ "% &'

(',%* :$ ('%* &'

Natalie Parde - UIC CS 421
67

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93)𝑃KN(𝑤/|𝑤/982<
/93)

Natalie Parde - UIC CS 421 68

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93)𝑃KN(𝑤/|𝑤/982<
/93)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤$&! =
𝑑

∑@ 𝐶(𝑤$&!𝑣)
𝑤 ∶ 𝑐 𝑤$&!𝑤 > 0

Normalized discount Number of word types that can follow 𝑤$&!

Natalie Parde - UIC CS 421 69

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93)𝑃KN(𝑤/|𝑤/982<
/93)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

Natalie Parde - UIC CS 421 70

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93)𝑃KN(𝑤/|𝑤/982<
/93)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the
uniform distribution (𝜀 = empty string)

𝑃A, 𝑤 =
max(𝑐A, 𝑤 − 𝑑, 0)

∑B7 𝑐A,(𝑤7) + 𝜆(𝜀)
1
𝑉

Natalie Parde - UIC CS 421 71

Stupid Backoff
• Doesn’t even try to make the language model a true probability

distribution 😌 (so doesn’t discount higher-order probabilities)
• If a higher-order n-gram has a zero count, backs off to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤' 𝑤'()*+'(+ = $
,(.!"#$%

!)
,(.!"#$%

!"%)
	 if	𝑐 𝑤'()*+' > 0

𝜆𝑆 𝑤' 𝑤'()*0'(+ 	 otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = ,(%)
/

Generally, 0.4 works well (Brants et al., 2007)

Natalie Parde - UIC CS 421 72

Summary:
Language
Modeling
with N-
Grams

73

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• N-grams: Sequences of n letters
• Language models: Statistical

models of language based on
observed word or character co-
occurrences

• N-gram probabilities can be
computed using maximum
likelihood estimation

• Language models can be
intrinsically evaluated using
perplexity

• Unknown words can be handled
using <UNK> tokens

• Known words in unseen contexts can
be handled using smoothing

