N-Gram
Language

Models

Natalie Parde
UIC CS 421

Language Is inherently contextual.

— \Words or characters in

< language are dependent upon
one another!

« Sequence modeling allows
us to make use of sequential
information in language

* One way to model sequential
information in language is
with language models

Natalie Parde - UIC CS 421

N-gram language
modeling

Evaluating LMs
Improving n-gram LMs

Thursday
I S
Tuesday ’

Text classification
Naive Bayes
Evaluating text classifiers

Natalie Parde - UIC CS 421 3

N-gram language
modeling

Evaluating LMs
Improving n-gram LMs

Thursday

Tuesday

Text classification
Naive Bayes
Evaluating text classifiers

Natalie Parde - UIC CS 421

Language
Modeling

« Learning how to effectively
predict the likelihood of
word or character
sequences in a language

I’'m so excited to be taking CS

421 this

: refriarator |

Natalie Parde - UIC CS 421

Why is language
modeling useful?

» Helps identify words in noisy, ambiguous
input

» Speech recognition or autocorrect
* Helps generate natural-sounding language
* Machine translation or image
captioning
* In contemporary NLP, language modeling
forms the basis of most approaches
« Language representation

Natalie Parde - UIC CS 421

Language
models

come In

many
forms!

* More straightforward:
 N-gram language models

» More sophisticated
* Neural language models

Natalie Parde - UIC CS 421

« Sequences of a predefined item type
within a language
« N — Size of the sequence

« -gram — Greek-derived suffix meaning
“‘what is written”

* First use of the term appears to be in the
late 1940s

» A Mathematical Theory of Communication,
by Claude Shannon:
https://people.math.harvard.edu/~ctm/home/
text/others/shannon/entropy/entropy.pdf

Natalie Parde - UIC CS 421 8

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

N-grams can be words,
characters, or any other
type of item in your
ELEL[-N

N-grams are interesting!

Natalie Parde - UIC CS 421

. * Most higher-order (n>3) n-
SpeCIaI grams are simply referred
to using the value of n
N-Grams 0

* 4-gram
« 5-gram

« However, lower-order n-
grams are often referred to

using special terms: trigram = —
« Unigram (1-gram) p(spring | “421 this’)

« Bigram (2-gram) _ bigrarm

 Trigram (3-gram) m_‘
NG | “this”)

unigram

Natalie Parde - UIC CS 421 10

N-Gram Language Models

* Goal: Predict P(word|history)
« P(“spring” | “I'm so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

11

Probabilities for n-gram
language models come from
corpus frequencies.

* Intuition:
1. Take a large corpus
2. Count the number of times you see the history

3. Count the number of times the specified word
follows the history

P(“spring” | “I'm so excited to be taking CS 421 this”)

= C(“I'm so excited to be taking CS 421 this spring”) /
C(“I'm so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

12

However, we don’t necessarily want to
consider our entire history.

« What if our history contains uncommon words?
* What if we have limited computing resources?

Natalie Parde - UIC CS 421 13

Better way of estimating P(word|history)

 Instead of computing the probability of a
word given its entire history,

« We do this using fixed-length

Natalie Parde - UIC CS 421 14

« We can predict the probability of some future
unit without looking too far into the past

N'g ram « Bigram language model: Probability of a
word depends only on the previous word

mOdeIS fO”OW « Trigram language model: Probability of a
word depends only on the two previous

the Markov wore

assunm pt|on _ N-gram language model: Probability of a

word depends only on the n-1 previous
words

More formally....

o P(wi|wf™) = P(wy Wi 1)

« We can then multiply these individual word probabilities together to get the
probability of a word sequence

* P(wi") = 713=1P(Wk|WI§—_1%I+1)

P(“Summer break is already over?”)
P(“over?” | “already”) * P(“already” | “is”) *
P(“is” | “break”) * P(“break” | “Summer”)

Natalie Parde - UIC CS 421

O

To compute n-
gram
probabilities,
we can use

maximum
likelihood
estimation.

 Maximum Likelihood Estimation
(MLE):
» Get the required n-gram frequency
counts from a corpus
* Normalize them to a 0-1 range
y P(Wn I Wn-1) =

» # of occurrences of the
bigram w,,.1 w,, divided by

» # of occurrences of the
unigram wp, 4

17

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation

| am cold.

E(ou are cold.

Eeryone IS cold.

This is Chicago.

Example: Maximum Likelihood
Estimation

lamcold. = = = = = = » <s> | am cold. </s>
E(ou arecold.m = — =— = » <s> You are cold. </s>
lEveryone Is cold. = = = *| <s> Everyone Is cold. </s>

This is Chicago. [~ = = =% <s> This is Chicago. </s>

Example: Maximum Likelihood

Estimation

lamcold. = = = = = = > <s>| am cold. </s?[<s> | 1
o | am 1
E(ou arecold. = = — — — > <s> You are cold. </s> am cold. 1
. cold. </s> 3
E/eryone Is cold. = = = #| <s> Everyone Is cold. </s>

. . - : is Chicago. 1

This is Chicago. = — — =] <s> This is Chicago. </s> _
: ~ aamm Chicago. </s> 1

Natalie Parde - UIC CS 421 20

Example: Maximum Likelihood

Estimation

Sigam | Fre_

lamcold. = = = = = = » <s> | am cold. </s> | <s>|
o | am
[YOU arecold.m— =— = = » <s> You are cold. </s> am cold.
cold. </s>

. I\ .
Everyone is cold. = = = #) <s> Everyone Is cold. </s>

is Chicago.

This is Chicago. = = = =*| <s> This is Chicago. </s> Chicago. </s>

Natalie Parde - UIC CS 421

1
1
1

<s>

am

cold.

Chicago.

</s>

21

Example: Maximum Likelihood

Estimation
igram | Froq. [N Unigram

—_— .

lamcold. = = = = — = » <s> | am cold. </s> | <s> | 1 <s> 4
o | am 1 | 1
E(ou arecold.m— — =— = » <s> You are cold. </s> am cold. 1 am 1
cold. </s> 3 cold. 3
0] ‘\ L)
Everyone is cold. = = = #) <s> Everyone Is cold. </s>

is Chicago. 1 Chicago.

This is Chicago. — — — —*|<s>This is Chicago. </s> Chicago. </s> 1 </s> 4

P(I" | “<s>") = C(*<s> I) / G(“<s>") = 1/ 4 = 0.25

Natalie Parde - UIC CS 421

Example: Maximum Likelihood

Estimation
igram | Froq. [N Unigram

—_— .

lamcold. = = = = — = » <s> | am cold. </s> | <s> | 1 <s> 4
o | am 1 | 1
E(ou arecold.m— — =— = » <s> You are cold. </s> am cold. 1 am 1
cold. </s> 3 cold. 3
0] ‘\ L)
Everyone is cold. = = = #) <s> Everyone Is cold. </s>

is Chicago. 1 Chicago.

This is Chicago. — — — —*|<s>This is Chicago. </s> Chicago. </s> 1 </s> 4

P(I" | “<s>") = C(*<s> I) / G(“<s>") = 1/ 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 /3 = 1.00

Natalie Parde - UIC CS 421

Example: Maximum Likelihood

Estimation
igram | Froq. [N Unigram

—_— .

lamcold. = = = = — = » <s> | am cold. </s> | <s> | 1 <s> 4
o | am 1 | 1
E(ou arecold.m— — =— = » <s> You are cold. </s> am cold. 1 am 1
cold. </s> 3 cold. 3
0] ‘\ L)
Everyone is cold. = = = #) <s> Everyone Is cold. </s>

is Chicago. 1 Chicago.

This is Chicago. — — — —*|<s>This is Chicago. </s> Chicago. </s> 1 </s> 4

P(I" | “<s>") = C(*<s> I) / G(“<s>") = 1/ 4 = 0.25

P(“</s>" | “cold.”) = C(“cold. </s>”) / C(*cold.”) = 3 / 3

Natalie Parde - UIC CS 421

O

We can
learn a lot
of useful

things from
n-gram
statistics!

« Syntactic information

Do nouns often follow verbs?

* Do verbs usually follow specific
unigrams?

 Task-relevant information

* |s it likely that virtual assistants will
hear the word “I" in a user’s input?

 Cultural or sociological information

« Are people likelier to want
quesadillas than haggis?

25

Natalie Parde - UIC CS 421

Which type of n-
gram Is best?

* In general, the highest-order value of n that your data can
support

» Sparsity increases with order, and sparse feature vectors are
not very useful when training statistical models

« Make sure that your dataset is large enough to handle your
selected n-gram size

* We can usually determine this by running experiments on the
same data with different n-gram sizes and figuring out which
size leads to the best results

» For a deep dive into statistical power in NLP experiments,
check out the following paper:

» With Little Power Comes Great Responsibility, by Dallas
Card et al.: https://aclanthology.org/2020.emnlp-
main.745/

Natalie Parde - UIC CS 421

https://aclanthology.org/2020.emnlp-main.745/
https://aclanthology.org/2020.emnlp-main.745/

N-gram language
modeling

Evaluating LMs
Improving n-gram LMs

Thursday

Tuesday ’

Text classification
Naive Bayes
Evaluating text classifiers

Natalie Parde - UIC CS 421 27

» Two types of evaluation paradigms:

We’ve learned . Extrinsic
how to build n- * Intrinsic
« Extrinsic evaluation: Embed the

gram Ianguage language model in an application,
models. but and compute changes in task

- performance
hOW dO we * Intrinsic evaluation: Measure the
eva|uate them’) quality of the model, independent of

any application

N
<
0
®)
S
>

1
()
©
—
@©
o
2
&
©
Z

* Intrinsic evaluation metric for language models

1 » Perplexity (PP) of a language model on a test set is the
PerpIeXIty inverse probability of the test set, normalized by the

number of words in the test set

Natalie Parde - UIC CS 421

29

More formally....

. _n 1 _n n 1
PP(W) - \/P(W1W2...Wn) B \/Hi=1P(Wi|W1"'Wi—1)

 Where W is a test set containing words w,, w,, ...,
Wn

» History size depends on n-gram size

* P(wilw;_1) vs P(Wi|w;_pw;_1), etc.
« Higher conditional probability of a word sequence —
lower perplexity

* Minimizing perplexity = maximizing test set

probability according to the language model

Natalie Parde - UIC CS 421

30

Example: Perplexity

Training Set \
\Word | Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
lllinois 10

Chicago 10

Example: Perplexity

| Training Set |

\Word | Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10

of 10
lllinois 10
Chicago 10

y

Test String

CS 421 Statistical Natural Language

J

Processing University of lllinois Chicago

p—

Natalie Parde - UIC CS 421

32

Example: Perplexity

| Training Set |

\Word | Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10

of 10
lllinois 10
Chicago 10

y

Test String

CS 421 Statistical Natural Language
Processing University of lllinois Chicago

L

PP(W) = n\/

1 n

Pwyw, ..wy,)

V

n
[Trwmm
L] P(wilwy ...w;_q)

Example: Perplexity

CS

421
Statistical
Natural
Language
Processing
University
of

lllinois
Chicago

Training Set

Frequency

10
10
10
10
10
10
10
10
10

Test String

CS 421 Statistical Natural Language
Processing University of lllinois Chicago

L

PP(W) _n 1 _ n ﬁ 1
 [Pwywy awy) = P(w;|lwyq ...w;_q1)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421 34

Example: Perplexity

Training Set \ Test String

m CS 421 Statistical Natural Language

CS 10 Ifrocessing University of lllinois Chicago

421

Statistical

Natural PP(W) = n\/ 1 _ i ﬁ 1
Language P(wiw; ...wy) = P(wilwy ...w;_q)
Processing

University P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
of P(“4217) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1
lllinois

Chicago

Example: Perplexity

421
Statistical
Natural
Language
Processing
University
of

lllinois
Chicago

Training Set
‘Word | Frequency | P(Word)
CS 10 0.1

10
10
10
10
10
10
10
10
10

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

Test String

CS 421 Statistical Natural Language
Processing University of lllinois Chicago

L

1 n

PP(W) = n\/P

(Wywy .. W)

\

n
[[t
=1 P(wilwg ...w;_q)

Example: Perplexity

421
Statistical
Natural
Language
Processing
University
of

lllinois
Chicago

Training Set
‘Word | Frequency | P(Word)
CS 10 0.1

10
10
10
10
10
10
10
10
10

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

Test String

CS 421 Statistical Natural Language
Processing University of lllinois Chicago

L

PP(W) _n 1 . n ﬁ 1
- P(wiw; ...wy) - d =1 P(wi|wy ...w;_q)

PP("CS 421 Statistical Natural Language Processing
University of lllinois Chicago”)

w0 ! 10
0.1%0.1%0.1%0.1%0.1%0.1%x0.1%0.1%x0.1%0.1 o

Natalie Parde - UIC CS 421 37

Example: Perplexity

Training Set \ Test String

mm lllinois Chicago Chicago Chicago Chicago
CS 1 Chicago Chicago Chicago Chicago Chicago
421 1

Statistical 1

Natural 1 PP(W) = n\/ 1 _ e ﬁ 1
Language 1 P(wiwy ...wy) L LP(wi|wy .. wiy)
Processing 1 \

University 1

of 1

lllinois 1

Chicago 91

Natalie Parde - UIC CS 421

Example: Perplexity

Training Set \ Test String

Mm lllinois Chicago Chicago Chicago Chicago
CS 1 0.01 Chicago Chicago Chicago Chicago Chicago
421 1 0.01

Statistical 1 0.01

Natural 1 0.01 PP n\/ 1 o ﬁ 1
Language 1 0.01 P(wiwy ...wy) (= P(wilwy ...w;_1)
Processing 1 0.01

University 1 0.01

of 1 0.01

lllinois 1 0.01

Chicago 91 0.91

Natalie Parde - UIC CS 421

Example: Perplexity

Training Set \ Test String

Mm lllinois Chicago Chicago Chicago Chicago

CS 1 0.01 Chicago Chicago Chicago Chicago Chicago

421 1 0.01

Statistical 1 0.01

Natural 1 0.01 PP n\/ 1 o ﬁ 1

Language 1 0.01 P(wiwy ...wy) Jit P(wilwy ...w;_1)

Processing 1 0.01

University 1 0.01

of 1 0.01 PP(“lllinois Chicago Chicago Chicago Chicago Chicago

llinois 1 0.01 Chicago Chicago Chicago Chicago”)

Chicago 91 091 - 1(;/0_01*0_91*0_91*0_91*0_9110_91*0_91*0_91*0_91*0_91 =173

Natalie Parde - UIC CS 421 40

Perplexity can be used to
compare different
language models.

Which language model is best?

* Model A: Perplexity = 962
* Model B: Perplexity = 170

* Model C: Perplexity = 109

41

Natalie Parde - UIC CS 421

Perplexity can be used to
compare different
language models.

Which language model is best?

* Model A: Perplexity = 962

* Model B: Perplexity = 170

* Model C: Perplexity = 109

42

Natalie Parde - UIC CS 421

What kind of perplexity
scores are state-of-the-
art language models
reaching?

« Depends on the dataset

* Recently, as low as:

« ~10 on WikiText-103:
https://paperswithcode.com/sota/
lanqguage-modelling-on-wikitext-
103

« ~20 on Penn Treebank (Word
Level):
https://paperswithcode.com/sota/
language-modelling-on-penn-
treebank-word

Natalie Parde - UIC CS 421

43

https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

A cautionary note....

* Improvements in perplexity do not guarantee improvements in task
performance!

 However, the two are often correlated (and perplexity is quicker and
easier to check)

» Strong language model evaluations also include an extrinsic
evaluation component

Natalie Parde - UIC CS 421
44

How can we generate text using an n-
gram language model?

Select an n-gram randomly from the
distribution of all n-grams in the
training corpus

Randomly select an n-gram from the
same distribution, dependent on the

previous n-gram

+If we're using a bigram model and the
previous bigram was "CS 421," our next
bigram has to start with "421")

Natalie Parde - UIC CS 421

Repeat until the sentence-final token is
reached

45

N
v
)}
o
)
-
[0
ke
—
®
o
2
I
®
Z

N-gram size
affects
generation
output!

 To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

* Hill he late speaks; or! a more to leg less first you enter

* Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

* What means, sir. | confess she? then all sorts, he is trim,
captain.

B - More coherence.

* Fly, and will rid me these news of price. Therefore the sadness
of parting, as they say, ‘tis done.
* This shall forbid it should be branded, if renown made it empty.

Irect quote f —
.t quote from Shakespeare
* King Henry. What! | will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquetserv'din;

* |t cannot be but so. <=

O

Why were we
generating
verbatim
Shakespeare

text with a 4-
gram language
model?

* The corpus of all Shakespearean text
is relatively small (by modern NLP
standards)

« 29,066 vocabulary words
» 884,647 tokens

* This means higher-order n-gram
matrices are sparse:

* Only five possible continuations
for “It cannot be but” (“that,” “I,”
“he,” “thou,” and “SO”)

» Probability for all other continuations
is assumed to be zero

47

Natalie Parde - UIC CS 421

N-gram language
modeling

Evaluating LMs

% Improving n-gram LMs

Thursday
I S
Tuesday ’

Text classification
Naive Bayes
Evaluating text classifiers

Natalie Parde - UIC CS 421 48

‘“Zero’
probabilities
create

challenges
for language
models.

» Zero probabilities occur in two different
scenarios:

 Unknown words (out-of-vocabulary
words)

* Known words in unseen contexts

* However, language is varied and often
unpredictable---few combinations are
truly impossible

« Zero probabilities also interfere with
perplexity calculations

Natalie Parde - UIC CS 421 49

Modeling
Unknown
Words

« Add a pseudoword <UNK> to the vocabulary

 Then....

* Option A:

» Choose a fixed words list

» Convert any words not in that list to <UNK>

» Estimate the probabilities for <UNK> like any other word
* Option B:

» Replace all words occurring fewer than n times with

<UNK>

» Estimate the probabilities for <UNK> like any other word

* Option C:

* Replace the first occurrence of each word with <UNK>
» Estimate the probabilities for <UNK> like any other word

» Beware: If <UNK> ends up with a high probability (e.g., because you

have a small vocabulary), your language model will have artificially
lower perplexity!

« Make sure to compare to other language models using the
same vocabulary to avoid gaming this metric

Natalie Parde - UIC CS 421

50

oo

We can handle known words in previously unseen
contexts by applying smoothing techniques.

—

01010
11101
0101010
100100101001
110104117201
1 0101001

Natalie Parde - UIC CS 421

51

 Taking a bit of the probability mass from more frequent events and giving it
to unseen events.

« Sometimes also called “discounting”

« Many different smoothing techniques:
 Laplace (add-one)

+ Add-k

- Stupid backoff CS 421 8 CS 421

Kneser-Ne CS 590 5 CS 590 5
y CS 594 2 CS 594 2

CS 521 0w CS 521

—
V)
&

Natalie Parde - UIC CS 421
52

Laplace Smoothing

« Add one to all n-gram counts before they are normalized into
probabilities

* Not the highest-performing technique, but a useful baseline
* Practical method for other text classification tasks

Ci ci+1
*Pw) =5 —=P W)=~

Lev SO OIN - 8pled sljeleN

93

Example: Laplace Smoothing

(‘

WL Unigram | Frequency _

Chicago 4 Chicago is

Corpus Statistics: < is 8 is cold 4
cold 6 is hot 0
hot 0 0

Example: Laplace Smoothing

1

Corpus Statistics: {

| &

P(w;) =

r

f

Unigram __| Frequency _

Chicago 4
IS 8
cold 6
hot 0
h —
Chicago 18 = 0.22
is S _ 0.44
E —_ .
6
| —=0.
cold 18 0.33
0
hot g = 0.00

Natalie Parde - UIC CS 421

Chicago is
is cold 4
is hot 0

0

Chicago is
is cold

is hot

95

\

Example: Laplace Smoothing

(‘
Corpus Statistics: {
Ci
P(w;) = N <
L

Unigram __| Frequency _

Chicago 4
IS 8
cold 6
hot 0
h —
Chicago 18 = 0.22
is S _ 0.44
E —_ .
6
| —=0.
cold 18 0.33
0
hot g = 000

Natalie Parde - UIC CS 421

Chicago is
is cold 4
is hot 0
0
Chicago is £ 050
4
i 4
is cold 050
- |
is hot 0
5 = 0.00

56

Example: Laplace Smoothing

Pw) = L —P

[‘
Corpus Statistics: <

“r
e WD = o <

L

Unigram __| Frequency _

Chicago 4
is
cold
hot

Chicago

o O o

is
cold

hot

Natalie Parde - UIC CS 421

Chicago is
is cold 4
is hot 0

0

Chicago is

is cold

is hot {

o7

\

Example: Laplace Smoothing

Pw) = L —P

[‘
Corpus Statistics: <

“r
e WD = o <

L

Unigram __| Frequency _

Chicago 4+1

IS 8+1

cold 6+1

hot 0+1
unigram | provabity

Chicago

is

cold

hot

Natalie Parde - UIC CS 421

Chicago is 2+1
is cold 4+1
is hot 0+1

0+1

Chicago is

is cold

is hot {

58

\

Example: Laplace Smoothing

P(Wl) ~ % = PLaplace(Wi) =

Corpus Statistics: {

cit+1
N+V

(C

f
<

Unigram | Frequency
Chicago 4+1
IS 8+1
cold 6+1
hot 0+1
h —
Chicago >3 = 0.23
is 0 = 0.41
55 =
7
Id =
co >3 0.32
1
hot —=0.
o) 72 0.05

Natalie Parde - UIC CS 421

Chicago is

is cold 4+1

is hot 0+1
0+1

Chicago is
is cold

is hot

99

>

Example: Laplace Smoothing

Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1
Ci __ Citl
Pw) = TP w) =2 <L

7~

|

Cornus Statistics: <

Unigram __| Frequency _

Chicago 4
is 8
cold 6
hot 0

Chicago 2
g o = 0.23
is 0 = 0.41
ok
7
cold —— =032
> 0.3
1
hot
> = 0.05

Natalie Parde - UIC CS 421

>

Chicago is 2+1
is cold 4+1
is hot 0+1
0+1
Chicago is 2
4+4° 8
is cold 5 5 _
314 ke 7= 0.42 1
is hot 1 1
gra_ 1z 008

60

Probabilities:

Before and
After

Bigram Probability
' ' 2
Chicago is 2 050
4
' 4
is cold * o 0.50
8
is hot 0
g= 0.00
Bigram Probability
' ' 3
Chicago is > 038
8
is cold 5
7= 0.42
is hot 1
1= 0.08

Natalie Parde - UIC CS 421

61

Add-K

Smoothing

* Moves a bit less of the probability mass
from seen to unseen events

« Rather than adding one to each count,
add a fractional count (e.g., 0.5 or 0.01)

Ci citk
o . —— = . —
P(Wl) N PAdd—K(Wl) NV
c(Wp_1Wp)
c(Wn-1)

c(Wp_1wp)+k
P Wy |w,_1) = =
Add—K(n|Wn—1) c(Wp_1)+kV

* P(wplwp—1) =

* The value k can be optimized on a
validation set

Natalie Parde - UIC CS 421

62

Add-K smoothing is useful for some tasks,
but still tends to be suboptimal for language
modeling.

e Other smoothing techniques?

« Backoff: Use the specified n-gram size to
estimate probability if its count is greater than
0; otherwise, backoff to a smaller-size n-gram
until you reach a size with non-zero counts

 Interpolation: Mix the probability estimates
from multiple n-gram sizes, weighing and
combining the n-gram counts

Natalie Parde - UIC CS 421

63

—_— Natalie Parde - UIC CS 421

Katz Backoff

N

Incorporate a function a to distribute probability mass to lower-order n-grams

Rely on a discounted probability P* if the n-gram has non-zero counts

Otherwise, recursively back off to the Katz probability for the (n-1)-gram

(p+ — :
P* (Wp | Wi +1), if cWp_n41) >0

Pgo (W |Win+1) = 9

\a(w,"}__,%,ﬂ)PBo(Wn|w,’}:,%,+2), otherwise

)

'N_| Weight [l N-Gram | Probability | Value _
- 3 05 19421 P@421119) 07
InterPOIatlon 2 04 V421 P@421|9) D
0.2

1 0.1 421 P(421)

* Linear interpolation 0.5 % 0.7 + 0.4 % 0.5+ 0.1 % 0.2 = 0.57

* P(wplwpowpn_q) = 2 P(Wy|wp_owpn_q) + ,P(Wy|wy_q) + 43P (Wy)
« Where },;1; =1

 Conditional interpolation

@ (Wnlwp_owp_1) + A(Wnlwn—l) + A

* P'(wplwp_owpn_q) = A4

m Probability m Context-conditioned weights

19421 P@421]19) 07 0.5
421 P@21]1) 07 0.1

Natalie Parde - UIC CS 421 65

Some smoothing techniques incorporate
several of these techniques.

Kneser-Ney Smoothing Stupid Backoff

%

Natalie Parde - UIC CS 421

66

Kneser-Ney Smoothing

« Commonly used, high-performing technique that incorporates absolute discounting
» Obijective: Capture the intuition that although some lower-order n-grams are frequent,
they are mainly only frequent in specific contexts
« tall nonfat decaf peppermint

» “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135 million
results on Google), but it's mainly frequent when it follows the word “new”

» Creates a unigram model that estimates the probability of seeing the word w as a novel
continuation, in a new unseen context
« Based on the number of different contexts in which w has already appeared
. P W) = [{v:C(vw)>0}|

Continuation H{(u ,wr):c(u'wr)>0}|

Natalie Parde - UIC CS 421
67

Kneser-Ney Smoothing

maX(CKN (Wl. n+1) O)

P wi |[wi =
(ll l— n+1) ZvCKN(Wl n+1v)

Natalie Parde - UIC CS 421

+/1(Wl n+1)P (Wllwl n+2

68

Kneser-Ney Smoothing

max(cen (W —d, 0
(Wllwl n+1) — (KN(- n+1)) @ (Wllwl n+2
Yo cren (WiTp 1)

Normalized discount Number of word types that can follow w;_;

Natalie Parde - UIC CS 421

69

Kneser-Ney Smoothing

'.—n+1) —d, O)
R =T . DN
2 @ Wi—n+1v)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

Natalie Parde - UIC CS 421

i—1
I—n+2

70

Kneser-Ney Smoothing

cem p CED AL
(Wllwl n+1) — Z @ Wii—_%+1v) (Wllwl n+2)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

—
Discounted n-gram probability ...when the recursion terminates, unigrams are interpolated with the
uniform distribution (¢ = empty string)

P (W) = max(cxky(w) — d, 0)

4
2w Cxn (W)
Natalie Parde - UIC CS 421

1
+ /1(8) V

71

Stupid Backoff

* Doesn’t even try to make the language model a true probability
distribution = (so doesn’t discount higher-order probabilities)

* If a higher-order n-gram has a zero count, backs off to a lower-
order n-gram, weighted by a fixed weight

[
C(Wi_k+1)

* S(wilwiZgs1) = { CWiZics1)
\AS (w;|wiZe,,) otherwise

if c(Wi_je41) > 0

« Terminates in the unigram, which has the probability:

: Sw) = L2

Generally, 0.4 works well (Brants et al., 2007)

N
<
79}
o
)
)
o)
©
—
©
(o
2
I
©
Z

Summary:
Language
Modeling
with N-
Grams

N-grams: Sequences of n letters

Language models: Statistical
models of language based on
observed word or character co-
occurrences

N-gram probabilities can be
computed using maximum
likelihood estimation

Language models can be
intrinsically evaluated using
perplexity

Unknown words can be handled
using <UNK> tokens

Known words in unseen contexts can
be handled using smoothing

