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Language is inherently contextual.

• Words or characters in 
language are dependent upon 
one another!

• Sequence modeling allows 
us to make use of sequential 
information in language

• One way to model sequential 
information in language is 
with language models
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Week’s 
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This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers



Language 
Modeling
• Learning how to effectively 

predict the likelihood of 
word or character 
sequences in a language
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Why is language 
modeling useful?

• Helps identify words in noisy, ambiguous 
input

• Speech recognition or autocorrect
• Helps generate natural-sounding language

• Machine translation or image 
captioning

• In contemporary NLP, language modeling 
forms the basis of most approaches

• Language representation
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Language 
models 
come in 

many 
forms!



N-Grams

• Sequences of a predefined item type 
within a language

• N → Size of the sequence
• -gram → Greek-derived suffix meaning 

“what is written”
• First use of the term appears to be in the 

late 1940s
• A Mathematical Theory of Communication, 

by Claude Shannon: 
https://people.math.harvard.edu/~ctm/home/
text/others/shannon/entropy/entropy.pdf
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N-grams can be words, 
characters, or any other 
type of item in your 
language.
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N-grams are interesting! N-grams are interesting!



Special 
N-Grams

• Most higher-order (n>3) n-
grams are simply referred 
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to 
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram
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N-Gram Language Models
• Goal: Predict P(word|history)

• P(“spring” | “I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

P(“fall” | “I’m
 

so excited to 

be taking CS 

421 this”)
P(“refrigerator” | 

“I’m so excited 

to be taking CS 

421 this”)

P(“and” | “I’m so excited to be taking CS 421 this”)
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Probabilities for n-gram 
language models come from 
corpus frequencies.
• Intuition:

1. Take a large corpus
2. Count the number of times you see the history
3. Count the number of times the specified word 

follows the history

P(“spring” | “I’m so excited to be taking CS 421 this”) 
= C(“I’m so excited to be taking CS 421 this spring”) / 
C(“I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421
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However, we don’t necessarily want to 
consider our entire history.
• What if our history contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 421 this”)

Out of all possible 11-word sequences on the web, how 
many are “I’m so excited to be taking Natalie Parde’s 
CS 421 this”?
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Better way of estimating P(word|history)

• Instead of computing the probability of a 
word given its entire history, 
approximate the history using the 
most recent few words.

• We do this using fixed-length n-grams.

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)
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N-gram 
models follow 
the Markov 
assumption.

• We can predict the probability of some future 
unit without looking too far into the past

• Bigram language model: Probability of a 
word depends only on the previous word

• Trigram language model: Probability of a 
word depends only on the two previous 
words

• N-gram language model: Probability of a 
word depends only on the n-1 previous 
words

Natalie Parde - UIC CS 421
15



More formally….
• 𝑃 𝑤! 𝑤"!#" ≈ 𝑃(𝑤!|𝑤!#$%"!#" )
• We can then multiply these individual word probabilities together to get the 

probability of a word sequence
• 𝑃 𝑤"& ≈ ∏!'"

& 𝑃(𝑤!|𝑤!#$%"!#" )
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P(“Summer break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) * 
P(“is” | “break”) * P(“break” | “Summer”)
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To compute n-
gram 
probabilities, 
we can use 
maximum 
likelihood 
estimation.

17



Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

Natalie Parde - UIC CS 421 18



Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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🤷
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We can 
learn a lot 
of useful 
things from 
n-gram 
statistics!



Which type of n-
gram is best?
• In general, the highest-order value of n that your data can 

support

• Sparsity increases with order, and sparse feature vectors are 
not very useful when training statistical models

• Make sure that your dataset is large enough to handle your 
selected n-gram size

• We can usually determine this by running experiments on the 
same data with different n-gram sizes and figuring out which 
size leads to the best results

• For a deep dive into statistical power in NLP experiments, 
check out the following paper:

• With Little Power Comes Great Responsibility, by Dallas 
Card et al.: https://aclanthology.org/2020.emnlp-
main.745/
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https://aclanthology.org/2020.emnlp-main.745/


This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers



We’ve learned 
how to build n-
gram language 
models, but 
how do we 
evaluate them?
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• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the 
language model in an application, 
and compute changes in task 
performance

• Intrinsic evaluation: Measure the 
quality of the model, independent of 
any application

28



Perplexity
• Intrinsic evaluation metric for language models
• Perplexity (PP) of a language model on a test set is the 

inverse probability of the test set, normalized by the 
number of words in the test set

Natalie Parde - UIC CS 421
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More formally….

• 𝑃𝑃 𝑊 = ! !
"($"$#…$!)

= ! ∏'(!
) !

"($$|$"…$$%")

• Where W is a test set containing words w1, w2, …,  
wn

• History size depends on n-gram size
• 𝑃(𝑤'|𝑤'+!) vs 𝑃(𝑤'|𝑤'+,𝑤'+!), etc.

• Higher conditional probability of a word sequence → 
lower perplexity

• Minimizing perplexity = maximizing test set 
probability according to the language model

Natalie Parde - UIC CS 421
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

Natalie Parde - UIC CS 421 31



Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

Natalie Parde - UIC CS 421 32



Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“421”) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

PP(“CS 421 Statistical Natural Language Processing 
University of Illinois Chicago”) 

= "& !
'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!

= 10
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Example: Perplexity

Word Frequency P(Word)
CS 1
421 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤"…𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤!…𝑤$&!)

PP(“Illinois Chicago Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago”) 

= "& !
'.'!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!

= 1.73
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Perplexity can be used to 
compare different 
language models.

41



Perplexity can be used to 
compare different 
language models.

42



What kind of perplexity 
scores are state-of-the-
art language models 
reaching?

• Depends on the dataset
• Recently, as low as:

• ~10 on WikiText-103: 
https://paperswithcode.com/sota/
language-modelling-on-wikitext-
103

• ~20 on Penn Treebank (Word 
Level): 
https://paperswithcode.com/sota/
language-modelling-on-penn-
treebank-word

Natalie Parde - UIC CS 421 43

https://paperswithcode.com/sota/language-modelling-on-wikitext-103
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A cautionary note….

• Improvements in perplexity do not guarantee improvements in task 
performance!

• However, the two are often correlated (and perplexity is quicker and 
easier to check)

• Strong language model evaluations also include an extrinsic 
evaluation component

Natalie Parde - UIC CS 421
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How can we generate text using an n-
gram language model?

Natalie Parde - UIC CS 421 45

1

Select an n-gram randomly from the 
distribution of all n-grams in the 
training corpus

2

Randomly select an n-gram from the 
same distribution, dependent on the 
previous n-gram 
•If we're using a bigram model and the 
previous bigram was "CS 421," our next 
bigram has to start with "421")

3

Repeat until the sentence-final token is 
reached



N-gram size 
affects 
generation 
output!

46
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Why were we 
generating 
verbatim 
Shakespeare 
text with a 4-
gram language 
model?



This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Text classification
Naïve Bayes
Evaluating text classifiers



“Zero” 
probabilities 
create 
challenges 
for language 
models.

• Zero probabilities occur in two different 
scenarios:

• Unknown words (out-of-vocabulary 
words)

• Known words in unseen contexts 
• However, language is varied and often 

unpredictable---few combinations are 
truly impossible

• Zero probabilities also interfere with 
perplexity calculations

Natalie Parde - UIC CS 421 49



Modeling 
Unknown 
Words

• Add a pseudoword <UNK> to the vocabulary

• Then….
• Option A:

• Choose a fixed words list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with 

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Option C:
• Replace the first occurrence of each word with <UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware: If <UNK> ends up with a high probability (e.g., because you 
have a small vocabulary), your language model will have artificially 
lower perplexity!

• Make sure to compare to other language models using the 
same vocabulary to avoid gaming this metric
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We can handle known words in previously unseen 
contexts by applying smoothing techniques.
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Smoothing

• Taking a bit of the probability mass from more frequent events and giving it 
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Natalie Parde - UIC CS 421

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1     🥰
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Laplace Smoothing

N
atalie Parde - U

IC
 C

S 421

• Add one to all n-gram counts before they are normalized into 
probabilities

• Not the highest-performing technique, but a useful baseline
• Practical method for other text classification tasks

• 𝑃 𝑤/ = 0-
1 → 𝑃Laplace 𝑤/ = 0-23

124

53



Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

Natalie Parde - UIC CS 421 54



Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 58



Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$-!
,-.

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08

Natalie Parde - UIC CS 421

Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1

60



Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12

= 0.08

Probabilities: 
Before and 
After

61



Add-K 
Smoothing

Natalie Parde - UIC CS 421

• Moves a bit less of the probability mass 
from seen to unseen events

• Rather than adding one to each count, 
add a fractional count (e.g., 0.5 or 0.01)

• 𝑃 𝑤/ = 0-
1 → 𝑃Add−K 𝑤/ = 0-27

1274

• 𝑃 𝑤8|𝑤893 = 0(:;<=:;)
0(:;<=)

 → 

𝑃Add−K 𝑤8|𝑤893 = 0 :;<=:; 27
0 :;<= 274

• The value k can be optimized on a 
validation set
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Add-K smoothing is useful for some tasks, 
but still tends to be suboptimal for language 
modeling.
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Katz Backoff
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Interpolation
• Linear interpolation

• 𝑃; 𝑤8 𝑤89<𝑤893 =	𝜆3𝑃 𝑤8 𝑤89<𝑤893 + 𝜆<𝑃 𝑤8 𝑤893 + 𝜆=𝑃(𝑤8)
• Where ∑! 𝜆! = 1

• Conditional interpolation
• 𝑃7 𝑤# 𝑤#&"𝑤#&! =	𝜆!(𝑤#&"#&!)𝑃 𝑤# 𝑤#&"𝑤#&! + 𝜆"(𝑤#&"#&!)𝑃 𝑤# 𝑤#&! + 𝜆8(𝑤#&"#&!)𝑃(𝑤#)

Context-conditioned weights

Natalie Parde - UIC CS 421

N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1
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Some smoothing techniques incorporate 
several of these techniques.
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Kneser-Ney Smoothing Stupid Backoff



Kneser-Ney Smoothing

• Commonly used, high-performing technique that incorporates absolute discounting
• Objective: Capture the intuition that although some lower-order n-grams are frequent, 

they are mainly only frequent in specific contexts
• tall nonfat decaf peppermint _______

• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135 million 
results on Google), but it’s mainly frequent when it follows the word “new”

• Creates a unigram model that estimates the probability of seeing the word w as a novel 
continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = "∶$ "% &'

(',%* :$ ('%* &'

Natalie Parde - UIC CS 421
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93 )𝑃KN(𝑤/|𝑤/982<
/93 )
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93 )𝑃KN(𝑤/|𝑤/982<
/93 )

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤$&! =
𝑑

∑@ 𝐶(𝑤$&!𝑣)
𝑤 ∶ 𝑐 𝑤$&!𝑤 > 0

Normalized discount Number of word types that can follow 𝑤$&!
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93 )𝑃KN(𝑤/|𝑤/982<
/93 )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823/93 )𝑃KN(𝑤/|𝑤/982<
/93 )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the 
uniform distribution (𝜀 = empty string)

𝑃A, 𝑤 =
max(𝑐A, 𝑤 − 𝑑, 0)

∑B7 𝑐A,(𝑤7) + 𝜆(𝜀)
1
𝑉

Natalie Parde - UIC CS 421 71



Stupid Backoff
• Doesn’t even try to make the language model a true probability 

distribution 😌 (so doesn’t discount higher-order probabilities)
• If a higher-order n-gram has a zero count, backs off to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤' 𝑤'()*+'(+ = $
,(.!"#$%

! )
,(.!"#$%

!"% )
	 if	𝑐 𝑤'()*+' > 0

𝜆𝑆 𝑤' 𝑤'()*0'(+ 	 otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = ,(%)
/

Generally, 0.4 works well (Brants et al., 2007)
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Summary: 
Language 
Modeling 
with N-
Grams
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• N-grams: Sequences of n letters
• Language models: Statistical 

models of language based on 
observed word or character co-
occurrences

• N-gram probabilities can be 
computed using maximum 
likelihood estimation

• Language models can be 
intrinsically evaluated using 
perplexity

• Unknown words can be handled 
using <UNK> tokens

• Known words in unseen contexts can 
be handled using smoothing


